A Large-Step Infeasible-Interior-Point Method for the P*-Matrix LCP
نویسندگان
چکیده
A large-step infeasible-interior-point method is proposed for solving P∗(κ)-matrix linear complementarity problems. It is new even for monotone LCP. The algorithm generates points in a large neighborhood of an infeasible central path. Each iteration requires only one matrix factorization. If the problem is solvable, then the algorithm converges from arbitrary positive starting points. The computational complexity of the algorithm depends on the quality of the starting point. If a well-centered starting point is feasible or close to being feasible, then it has O((1+κ) √ n ln(ǫ0/ǫ))iteration complexity. With appropriate initialization, a modified version of the algorithm terminates in O((1 + κ)n ln(ǫ0/ǫ)) steps either by finding a solution or by determining that the problem is not solvable. High-order local convergence is proved for problems having a strictly complementary solution. We note that while the properties of the algorithm (e.g., computational complexity) depend on κ, the algorithm itself does not.
منابع مشابه
An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملA full-Newton step infeasible interior-point algorithm for linear complementarity problems based on a kernel function
In this paper, we first present a brief infeasible interior-point method with full-Newton step for solving linear complementarity problem (LCP). The main iteration consists of a feasibility step and several centrality steps. First we present a full Newton step infeasible interior-point algorithm based on the classic logarithmical barrier function. After that a specific kernel function is introd...
متن کاملA Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 7 شماره
صفحات -
تاریخ انتشار 1997